Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 125: 104891, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689030

RESUMO

Polyvinylidene fluoride - hydroxyapatite composite filaments were processed by twin-screw extrusion at different processing angular velocities and characterized by scanning electron and atomic force microscopies, differential scanning calorimetry and tensile tests. Polymer-ceramic composites with a 0-3 connectivity were successfully obtained. Regardless of the used processing parameters, all composite filaments present very similar melting (∼152°C) and solidification (∼139°C) points and elastic moduli (∼1.0 GPa) for hydroxyapatite as dispersed phase in the composite with concentrations up to 25 wt%, indicating that they are adequate for twin-screw extrusion and 3D printing. However, the yield strength (∼29 MPa), ultimate tensile strength (∼36 MPa) and tensile point (∼29 MPa) parameters are similar only for hydroxyapatite concentrations up to 15 wt%, once higher concentrations of hydroxyapatite as dispersed phase result in fragile samples (∼50% lower for each studied property).


Assuntos
Durapatita , Polivinil , Polímeros de Fluorcarboneto , Polímeros , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA